Publications

2024

Abstract

The cosmopolitan marine Roseobacter clade is of global biogeochemical importance. Members of this clade produce sulfur-containing amino lipids (SALs) of importance for biofilm formation and marine surface colonization processes. Despite their physiological importance and abundance, SALs have only been explored through genomic mining approaches and lipidomic studies based on mass spectrometry, which left the relative and absolute structures of SALs unresolved hindering progress in biochemical and functional investigations. Here, we report the structural revision of a new group of SALs, which we named cysteinolides, using a combination of analytical techniques, isolation and degradation experiments and total synthetic efforts. Contrary to the previously proposed homotaurine-based structures, cysteinolides are composed of an N,O-acylated cysteinolic acid-containing head group carrying various different (α?hydroxy) carboxylic acids. We performed the first validated targeted-network based analysis, which allowed us to map the distribution and structural diversity of cysteinolides across bacterial lineages. Beyond offering structural insights, our research provides SAL standards and validated analytical data. This information holds significance for forthcoming investigations into bacterial sulfonolipid metabolism and biogeochemical nutrient cycling within marine environments.

Abstract

Members of the bacterial phylum Planctomycetota have recently emerged as promising and for the most part untapped sources of novel bioactive compounds. The characterization of more than 100 novel species in the last decade stimulated recent bioprospection studies that start to unveil the chemical repertoire of the phylum. In this study, we performed systematic bioinformatic analyses based on the genomes of all 131 described members of the current phylum focusing on the identification of type III polyketide synthase (PKS) genes. Type III PKSs are versatile enzymes involved in the biosynthesis of a wide array of structurally diverse natural products with potent biological activities. We identified 96 putative type III PKS genes of which 58 are encoded in an operon with genes encoding a putative oxidoreductase and a methyltransferase. Sequence similarities on protein level and the genetic organization of the operon point towards a functional link to the structurally related hierridins recently discovered in picocyanobacteria. The heterologous expression of planctomycetal type III PKS genes from strains belonging to different families in an engineered Corynebacterium glutamicum strain led to the biosynthesis of pentadecyl- and heptadecylresorcinols. Phenotypic assays performed with the heterologous producer strains and a constructed type III PKS gene deletion mutant suggest that the natural function of the identified compounds differs from that confirmed in other bacterial alkylresorcinol producers.

Abstract

The antimicrobial agent epifadin, which is produced by the nasal commensal Staphylococcus epidermidis, has— despite its short half-life — broad-spectrum activity, including against Staphylococcus aureus.

2023

Abstract

The genus Podaxis was first described from India by Linnaeus in 1771, but several revisions of the genus have left the taxonomy unclear. Forty-four Podaxis species names and nine intraspecific varieties are currently accepted, but most fungarium specimens are labelled Podaxis pistillaris. Recent molecular analyses based on barcoding genes suggest that the genus comprises several species, but their status is largely unresolved. Here we obtained basidiospores and photographs from 166 fungarium specimens from around the world and generated a phylogeny based on rDNA internal transcribed spacer ITS1, 5.8S and ITS2 (ITS), and a phylogenomic analysis of 3 839 BUSCO genes from low-coverage genomes for a subset of the specimens. Combining phylogenetics, phylogenomics, morphology, ecology, and geographical distribution, spanning 250 years of collections, we propose that the genus includes at least 16 unambiguous species. Based on 10 type specimens (holotype, paratype, and syntype), four recorded species were confirmed, P. carcinomalis, P. deflersii, P. emerici, and P. farlowii. Comparing phylogenetic analysis with described species, including morphology, ecology, and distribution, we resurrected P. termitophilus and designated neotypes, epitypes, or lectotypes for five previously described species, P. aegyptiacus, P. africana, P. beringamensis, P. calyptratus, and P. perraldieri. Lastly, based on phylogenies and morphology of type material, we synonymized three reported species, P. algericus, P. arabicus, and P. rugospora with P. pistillaris, and described five new species that we named P. desolatus, P. inyoensis, P. mareebaensis, P. namaquensis, and P. namibensis.

Abstract

After conducting an in silico analysis of the cryptic mdk cluster region and performing transcriptomic studies, an integrative Streptomyces BAC Vector containing the mdk gene sequence was constructed. The heterologous expression of the mdk cluster in Streptomyces albus J1074 resulted in the production of the angucyclic product, seongomycin, which allowed for the assesment of its antibacterial, antiproliferative, and antiviral activities. Heterologous production was further confirmed by targeted knock-out experiments involving key regulators of the biosynthetic pathways. We were further able to revise the core structure of maduralactomycin A, using a computational approach.

Abstract

β-Amino acid-containing macrolactams represent a structurally diverse group of bioactive natural products derived from polyketides; however we are currently lacking a comprehensive overview about their abundance across bacterial families and the underlying biosynthetic diversity. In this study, we employed a targeted β-amino acid-specific homology-based multi-query search to identify potential bacterial macrolactam producers. Here we demonstrate that approximately 10% of each of the identified actinobacterial genera harbor a biosynthetic gene cluster (BGC) encoding macrolactam production. Based on our comparative study, we propose that mutations occurring in specific regions of polyketide synthases (PKS) are the primary drivers behind the variation in macrolactam ring sizes. We successfully validated two producers of ciromicin A from the genus Amycolatopsis, revised the composition of the biosynthetic gene cluster region mte of macrotermycins, and confirmed the ciromicin biosynthetic pathway through heterologous expression. Additionally, network-based metabolomic analysis uncovered three previously unreported macrotermycin congeners from Amycolatopsis sp. M39. The combination of targeted mining and network-based analysis serves as a powerful tool for identifying macrolactam producers and our studies will catalyze the future discovery of yet unreported macrolactams.

Abstract

Macrotermitinae termites have farmed fungi in the genus Termitomyces as a food source for millions of years. However, the biochemical mechanisms orchestrating this mutualistic relationship are largely unknown. To deduce fungal signals and ecological patterns that relate to the stability of this symbiosis, we explored the volatile organic compound (VOC) repertoire of Termitomyces from Macrotermes natalensis colonies. Results show that mushrooms emit a VOC pattern that differs from mycelium grown in fungal gardens and laboratory cultures. The abundance of sesquiterpenoids from mushrooms allowed targeted isolation of five drimane sesquiterpenes from plate cultivations. The total synthesis of one of these, drimenol, and related drimanes assisted in structural and comparative analysis of volatile organic compounds (VOCs) and antimicrobial activity testing. Enzyme candidates putatively involved in terpene biosynthesis were heterologously expressed and while these were not involved in the biosynthesis of the complete drimane skeleton, they catalyzed the formation of two structurally related monocyclic sesquiterpenes named nectrianolins.

Abstract

The formation of C−C bonds via the allylation of carbonyl compounds has been widely applied in total syntheses. Amongst the many possible strategies, the Barbier-type allylation in aqueous media has received only moderate attention over the last decades despite its mild reaction conditions. In this study, we investigated the indium (In0) and zinc (Zn0) mediated Barbier allylation reaction to efficiently synthesize base-labile 3-methylene-5-hydroxy containing building blocks for natural product total synthesis. As model study we selected the allylation of lipidic undecanal with ethyl 3-(bromomethyl)but-3-enoate in the presence of either Zn0 or In0 and investigated the effects of additives on yields and selectivities. We then applied the optimized reaction conditions to sterically demanding allyl bromides and functionalized aromatic aldehydes yielding eleven new homoallylic alcohols, one of which was further transformed via oxidation and reduction sequences.

Abstract

We examine genomic adaptations that could facilitate autoresistance to the diet-acquired potent neurotoxic alkaloid batrachotoxin (BTX) in New Guinean toxic birds. Our work documents two new toxic bird species and shows that toxic birds carry multiple mutations in the SCN4A gene that are under positive selection. This gene encodes the most common vertebrate muscle Nav channel (Nav1.4). Molecular docking results indicate that some of the mutations that are present in the pore-forming segment of the Nav channel, where BTX binds, could reduce its binding affinity.

Abstract

Capitalizing on viable Pseudoxylaria cultures from different termite colonies, we obtained genomes of seven and transcriptomes of two Pseudoxylaria isolates. Using a whole-genome-based comparison with free-living members of the genus Xylaria, we document that the association has been accompanied by significant reductions in genome size, protein-coding gene content, and reduced functional capacities related to oxidative lignin degradation, oxidative stress responses and secondary metabolite production. Functional studies based on growth assays and fungus-fungus co-cultivations, coupled with isotope fractionation analysis, showed that Pseudoxylaria only moderately antagonizes growth of the termite food fungus Termitomyces, and instead extracts nutrients from the food fungus biomass for its own growth

2022

Abstract

A new and modular synthesis of the rosette-inhibitor sulfonolipid IOR-1A and chemical probes was achieved via decarboxylative cross-coupling reaction of a desymmetrized tartaric acid derivatives and alkyl zinc reagents of choice. Synthesized congeners and bifunctional probes allowed to determine structure-activity relation to profile binding partners in producer and recipient for the first time.

*corresponding author, # equal contribution