Publications
2024
Abstract
Fungi constitute the Earth’s second most diverse kingdom, however only a small percentage of these have been thoroughly examined and categorized for their secondary metabolites, which still limits our understanding of the ecological chemical and pharmacological potential of fungi. In this study, we explored members of the co-evolved termite-associated fungal genus Xylaria and identified a family of highly oxygenated polyketide-terpene hybrid natural products using an MS/MS molecular networking-based dereplication approach. Overall, we isolated six no yet reported xylasporin derivatives, of which xylasporin A (1) features a rare cyclic-carbonate moiety. Extensive comparative spectrometric (HRMS2) and spectroscopic (1D and 2D NMR) studies allowed to determine the relative configuration across the xylasporin family, which was supported by chemical shift calculations of more than 50 stereoisomers and DP4+ probability analyses. The absolute configuration of xylasporin A (1) was also proposed based on TDDFT-ECD calculations. Additionally, we were able to revise the relative and absolute configurations of co-secreted xylacremolide B produced by single x-ray crystallography. Comparative genomic and transcriptomic analysis allowed us to deduce the putative biosynthetic assembly line of xylasporins in the producer strain X802, and could guide future engineering efforts of the biosynthetic pathway.
Abstract
Although Basidiomycota produce pharmaceutically and ecologically relevant natural products, knowledge of how they coordinate their primary and secondary metabolism is virtually non-existent. Upon transition from vegetative mycelium to carpophore formation, mushrooms of the genus Psilocybe use L-tryptophan to supply the biosynthesis of the psychedelic tryptamine alkaloid psilocybin with the scaffold, leading to a strongly increased demand for this particular amino acid as this alkaloid may account for up to 2% of the dry mass. Using Psilocybe mexicana as our model and relying on genetic, transcriptomic, and biochemical methods, this study investigated if L-tryptophan biosynthesis and degradation in P. mexicana correlate with natural product formation. Although Basidiomycota produce pharmaceutically and ecologically relevant natural products, knowledge of how they coordinate their primary and secondary metabolism is virtually non-existent. Upon transition from vegetative mycelium to carpophore formation, mushrooms of the genus Psilocybe use L-tryptophan to supply the biosynthesis of the psychedelic tryptamine alkaloid psilocybin with the scaffold, leading to a strongly increased demand for this particular amino acid as this alkaloid may account for up to 2% of the dry mass. Using Psilocybe mexicana as our model and relying on genetic, transcriptomic, and biochemical methods, this study investigated if L-tryptophan biosynthesis and degradation in P. mexicana correlate with natural product formation.
[104] Roman, D., Meisinger, P., Guillonneau, R., Peng, C.-C., Peltner, L. K., Jordan, P. M., Haensch, V., Götze, S., Werz, O., Hertweck, C. , Chen, Y., Beemelmanns, C. Structure Revision of a Widespread Marine Sulfonolipid Class Based on Isolation and Total Synthesis. Angew. Chem. Int. Ed. 2024, 63, e202401195. https://doi.org/10.1002/anie.202401195
Abstract
The cosmopolitan marine Roseobacter clade is of global biogeochemical importance. Members of this clade produce sulfur-containing amino lipids (SALs) of importance for biofilm formation and marine surface colonization processes. Despite their physiological importance and abundance, SALs have only been explored through genomic mining approaches and lipidomic studies based on mass spectrometry, which left the relative and absolute structures of SALs unresolved hindering progress in biochemical and functional investigations. Here, we report the structural revision of a new group of SALs, which we named cysteinolides, using a combination of analytical techniques, isolation and degradation experiments and total synthetic efforts. Contrary to the previously proposed homotaurine-based structures, cysteinolides are composed of an N,O-acylated cysteinolic acid-containing head group carrying various different (α?hydroxy) carboxylic acids. We performed the first validated targeted-network based analysis, which allowed us to map the distribution and structural diversity of cysteinolides across bacterial lineages. Beyond offering structural insights, our research provides SAL standards and validated analytical data. This information holds significance for forthcoming investigations into bacterial sulfonolipid metabolism and biogeochemical nutrient cycling within marine environments.
Abstract
Members of the bacterial phylum Planctomycetota have recently emerged as promising and for the most part untapped sources of novel bioactive compounds. The characterization of more than 100 novel species in the last decade stimulated recent bioprospection studies that start to unveil the chemical repertoire of the phylum. In this study, we performed systematic bioinformatic analyses based on the genomes of all 131 described members of the current phylum focusing on the identification of type III polyketide synthase (PKS) genes. Type III PKSs are versatile enzymes involved in the biosynthesis of a wide array of structurally diverse natural products with potent biological activities. We identified 96 putative type III PKS genes of which 58 are encoded in an operon with genes encoding a putative oxidoreductase and a methyltransferase. Sequence similarities on protein level and the genetic organization of the operon point towards a functional link to the structurally related hierridins recently discovered in picocyanobacteria. The heterologous expression of planctomycetal type III PKS genes from strains belonging to different families in an engineered Corynebacterium glutamicum strain led to the biosynthesis of pentadecyl- and heptadecylresorcinols. Phenotypic assays performed with the heterologous producer strains and a constructed type III PKS gene deletion mutant suggest that the natural function of the identified compounds differs from that confirmed in other bacterial alkylresorcinol producers.
Abstract
The antimicrobial agent epifadin, which is produced by the nasal commensal Staphylococcus epidermidis, has— despite its short half-life — broad-spectrum activity, including against Staphylococcus aureus.
2023
Abstract
The genus Podaxis was first described from India by Linnaeus in 1771, but several revisions of the genus have left the taxonomy unclear. Forty-four Podaxis species names and nine intraspecific varieties are currently accepted, but most fungarium specimens are labelled Podaxis pistillaris. Recent molecular analyses based on barcoding genes suggest that the genus comprises several species, but their status is largely unresolved. Here we obtained basidiospores and photographs from 166 fungarium specimens from around the world and generated a phylogeny based on rDNA internal transcribed spacer ITS1, 5.8S and ITS2 (ITS), and a phylogenomic analysis of 3 839 BUSCO genes from low-coverage genomes for a subset of the specimens. Combining phylogenetics, phylogenomics, morphology, ecology, and geographical distribution, spanning 250 years of collections, we propose that the genus includes at least 16 unambiguous species. Based on 10 type specimens (holotype, paratype, and syntype), four recorded species were confirmed, P. carcinomalis, P. deflersii, P. emerici, and P. farlowii. Comparing phylogenetic analysis with described species, including morphology, ecology, and distribution, we resurrected P. termitophilus and designated neotypes, epitypes, or lectotypes for five previously described species, P. aegyptiacus, P. africana, P. beringamensis, P. calyptratus, and P. perraldieri. Lastly, based on phylogenies and morphology of type material, we synonymized three reported species, P. algericus, P. arabicus, and P. rugospora with P. pistillaris, and described five new species that we named P. desolatus, P. inyoensis, P. mareebaensis, P. namaquensis, and P. namibensis.
Abstract
After conducting an in silico analysis of the cryptic mdk cluster region and performing transcriptomic studies, an integrative Streptomyces BAC Vector containing the mdk gene sequence was constructed. The heterologous expression of the mdk cluster in Streptomyces albus J1074 resulted in the production of the angucyclic product, seongomycin, which allowed for the assesment of its antibacterial, antiproliferative, and antiviral activities. Heterologous production was further confirmed by targeted knock-out experiments involving key regulators of the biosynthetic pathways. We were further able to revise the core structure of maduralactomycin A, using a computational approach.
Abstract
β-Amino acid-containing macrolactams represent a structurally diverse group of bioactive natural products derived from polyketides; however we are currently lacking a comprehensive overview about their abundance across bacterial families and the underlying biosynthetic diversity. In this study, we employed a targeted β-amino acid-specific homology-based multi-query search to identify potential bacterial macrolactam producers. Here we demonstrate that approximately 10% of each of the identified actinobacterial genera harbor a biosynthetic gene cluster (BGC) encoding macrolactam production. Based on our comparative study, we propose that mutations occurring in specific regions of polyketide synthases (PKS) are the primary drivers behind the variation in macrolactam ring sizes. We successfully validated two producers of ciromicin A from the genus Amycolatopsis, revised the composition of the biosynthetic gene cluster region mte of macrotermycins, and confirmed the ciromicin biosynthetic pathway through heterologous expression. Additionally, network-based metabolomic analysis uncovered three previously unreported macrotermycin congeners from Amycolatopsis sp. M39. The combination of targeted mining and network-based analysis serves as a powerful tool for identifying macrolactam producers and our studies will catalyze the future discovery of yet unreported macrolactams.
Abstract
Macrotermitinae termites have farmed fungi in the genus Termitomyces as a food source for millions of years. However, the biochemical mechanisms orchestrating this mutualistic relationship are largely unknown. To deduce fungal signals and ecological patterns that relate to the stability of this symbiosis, we explored the volatile organic compound (VOC) repertoire of Termitomyces from Macrotermes natalensis colonies. Results show that mushrooms emit a VOC pattern that differs from mycelium grown in fungal gardens and laboratory cultures. The abundance of sesquiterpenoids from mushrooms allowed targeted isolation of five drimane sesquiterpenes from plate cultivations. The total synthesis of one of these, drimenol, and related drimanes assisted in structural and comparative analysis of volatile organic compounds (VOCs) and antimicrobial activity testing. Enzyme candidates putatively involved in terpene biosynthesis were heterologously expressed and while these were not involved in the biosynthesis of the complete drimane skeleton, they catalyzed the formation of two structurally related monocyclic sesquiterpenes named nectrianolins.
Abstract
The formation of C−C bonds via the allylation of carbonyl compounds has been widely applied in total syntheses. Amongst the many possible strategies, the Barbier-type allylation in aqueous media has received only moderate attention over the last decades despite its mild reaction conditions. In this study, we investigated the indium (In0) and zinc (Zn0) mediated Barbier allylation reaction to efficiently synthesize base-labile 3-methylene-5-hydroxy containing building blocks for natural product total synthesis. As model study we selected the allylation of lipidic undecanal with ethyl 3-(bromomethyl)but-3-enoate in the presence of either Zn0 or In0 and investigated the effects of additives on yields and selectivities. We then applied the optimized reaction conditions to sterically demanding allyl bromides and functionalized aromatic aldehydes yielding eleven new homoallylic alcohols, one of which was further transformed via oxidation and reduction sequences.
Abstract
We examine genomic adaptations that could facilitate autoresistance to the diet-acquired potent neurotoxic alkaloid batrachotoxin (BTX) in New Guinean toxic birds. Our work documents two new toxic bird species and shows that toxic birds carry multiple mutations in the SCN4A gene that are under positive selection. This gene encodes the most common vertebrate muscle Nav channel (Nav1.4). Molecular docking results indicate that some of the mutations that are present in the pore-forming segment of the Nav channel, where BTX binds, could reduce its binding affinity.
Abstract
Capitalizing on viable Pseudoxylaria cultures from different termite colonies, we obtained genomes of seven and transcriptomes of two Pseudoxylaria isolates. Using a whole-genome-based comparison with free-living members of the genus Xylaria, we document that the association has been accompanied by significant reductions in genome size, protein-coding gene content, and reduced functional capacities related to oxidative lignin degradation, oxidative stress responses and secondary metabolite production. Functional studies based on growth assays and fungus-fungus co-cultivations, coupled with isotope fractionation analysis, showed that Pseudoxylaria only moderately antagonizes growth of the termite food fungus Termitomyces, and instead extracts nutrients from the food fungus biomass for its own growth
2022
Abstract
A new and modular synthesis of the rosette-inhibitor sulfonolipid IOR-1A and chemical probes was achieved via decarboxylative cross-coupling reaction of a desymmetrized tartaric acid derivatives and alkyl zinc reagents of choice. Synthesized congeners and bifunctional probes allowed to determine structure-activity relation to profile binding partners in producer and recipient for the first time.
Abstract
Sphingofungins belong to a group of structurally related sphingolipid inhibitors produced by fungi, which specifically inhibit serine palmitoyl transferases, enzymes catalyzing the initial step during sphingolipid biosynthesis. We identified and elucidated the biosynthetic gene cluster responsible for the biosynthesis of sphingofungins B, C, and D in Aspergillus fumigatus. In vitro analyses have shown that sphingofungin biosynthesis starts with the condensation of a C18 polyketide with the uncommon substrate aminomalonate.
Abstract
Covering: findings from early 1980s until early 2022Microbial-derived cues of marine biofilms induce settlement and metamorphosis of marine organisms, a process responsible for the emergence of diverse flora and fauna in marine habitats. Although this phenomenon is known for more than 80 years, the research field has only recently gained much momentum. Here, we summarize the currently existing biochemical and microbial knowledge about microbial signalling molecules, con-specific signals, and synthetic compounds that induce or prevent recruitment, settlement, and metamorphosis in invertebrate larvae. We discuss the possible modes of action and conclude with perspectives for future research directions in the field of marine chemical ecology.
[90] Bissell AU, Rautschek J, Hoefgen S, Raguž L, Mattern DJ, Saeed N, Janevska S, Jojić K, Huang Y, Kufs JE, Herboeck B, Guo H, Hillmann F, Beemelmanns C, Valiante V (2022). Biosynthesis of the Sphingolipid inhibitors Sphingofungins in filamentous fungi requires aminomalonate as a metabolic precursor. ACS Chem Biol 17(2), 386-394.
Abstract
Serine palmitoyltransferase catalyzes the first step of the sphingolipid biosynthesis. Recently, sphingolipid homeostasis has been connected to several human diseases, making serine palmitoyltransferases an interesting therapeutic target. Known and efficient serine palmitoyltransferase-inhibitors are sphingofungins, a group of natural products isolated from fungi. To further characterize newly isolated sphingofungins, we designed an easy to use colorimetric serine palmitoyltransferase activity assay using FadD, which can be performed in 96-well plates. Because sphingofungins exert antifungal activitiy as well, we compared the in vitro assay results with an in vivo growth assay using Saccharomyces cerevisiae. The reported experiments showed differences among the assayed sphingofungins, highlighting an increase of activity based on the saturation levels of the polyketide tail.
Abstract
Synthesis of functionalized δ-hydroxy-β-keto esters using Chan's diene and modified Mukaiyama-aldol reaction conditions. Diastereoselective reduction to syn- and anti-diols and saponification yielded the respective acids. All synthesized compounds were evaluated for their 5-lipoxygenase activity.
[88] Kreuzenbeck NB, Seibel E, Schwitalla JW, Fricke J, Conlon BH, Schmidt S, Hammerbacher A, Köllner TG, Poulsen M, Hoffmeister D, Beemelmanns C* (2022). Comparative genomic and metabolomic analysis of Termitomyces species provides insights into the terpenome of the fungal cultivar and the characteristic odor of the fungus garden of Macrotermes natalensis termites. mSystems 7(1), e0121421.
Abstract
We determined the typical volatile emission of fungus comb biomass and Termitomyces nodules, revealing α-pinene, camphene, and d-limonene as the most abundant terpenes. Genome mining of Termitomyces followed by gene expression studies and phylogenetic analysis of putative enzymes related to secondary metabolite production encoded by the genomes uncovered a conserved and specific biosynthetic repertoire across strains. Finally, we proved by heterologous expression and in vitro enzymatic assays that a highly expressed gene sequence encodes a rare bifunctional mono-/sesquiterpene cyclase able to produce the abundant comb volatiles camphene and d-limonene.
Abstract
Metabolomic analysis of cocultures of Actinomadura sp. RB99 with fungal symbionts of termites allowed for the MS-guided isolation of four unreported madurastatin derivatives, including a siderophore-metal complex thereof.
Abstract
Aromatic prenylated metabolites have important biological roles and activities in all living organisms. Compared to their importance in all domains of life, we know relatively little about their substrate scopes and metabolic functions. Here, we describe a new UbiA-like prenyltransferase (Ptase) Ubi-297 encoded in a conserved operon of several bacterial taxa, including marine Flavobacteria and the genus Sacchromonospora. In silico analysis of Ubi-297 homologs indicated that members of this Ptase group are composed of several transmembrane α-helices and carry a conserved and distinct aspartic-rich Mg2+-binding domain. We heterologously produced UbiA-like Ptases from the bacterial genera Maribacter, Zobellia, and Algoriphagus in Escherichia coli. Investigation of their substrate scope uncovered the preferential farnesylation of quinoline derivatives, such as 8-hydroxyquinoline-2-carboxylic acid (8-HQA) and quinaldic acid. The results of this study provide new insights into the abundance and diversity of Ptases in marine Flavobacteria and beyond.
Abstract
Herein, we demonstrate the applicability of the 2,5-dimethylpyrrolo unit as a complementary N-protecting group in the highly diastereoselective synthesis of more than 20 different anti-amino alcohols (63–90% yields with up to 20 : 1 dr). Cleavage of the pyrrolo-N-protecting group was accomplished, e.g. in the presence of NH2OH under microwave conditions with yields exceeding 80%. The applicability of the protecting groups was further demonstrated by a short total synthesis of the sphinganine-like natural product clavaminol A. The introduction of the N-pyrrolo protecting group also offers the possibility to analyse product mixtures by NMR measurements due to the absence of conformational isomers, which are otherwise common for N-protecting groups.
Abstract
Sphingofungins are fungal natural products known to inhibit the biosynthesis of sphingolipids which play pivotal roles in various cell functions. Here, we report a short and flexible synthetic approach towards the sphingofungin family. Key step of the synthesis was a decarboxylative cross-coupling reaction of chiral sulfinyl imines with a functionalized tartaric acid derivative, which yielded the core motif of sphingofungins carrying four consecutive stereocenters and a terminal double bond. Subsequent metathesis reaction allowed for the introduction of different side chains of choice resulting in a total of eight sphingofungins, including for the first time sphingofungin C (eight steps from commercially available protected tartaric acid with an overall yield of 6 %) and sphingofungin A (ten steps). All newly synthesized derivatives were tested for their antifungal, cell-proliferative and antiparasitic activity unraveling their structure–activity relations.
2021
*corresponding author, # equal contribution